论文标题
大脑和生理网络中高阶相互作用的时间和频域评估的框架
A Framework for the Time- and Frequency-Domain Assessment of High-Order Interactions in Brain and Physiological Networks
论文作者
论文摘要
尽管复杂系统的标准网络描述基于量化系统单元对之间的链接,但涉及三个或多个单元的高阶交互(HOI)在管理集体网络行为方面起着重要作用。这项工作介绍了一种量化成对和HOI的方法,以用于多个时间尺度相互作用的多元节奏过程。我们将所谓的O信息率(OIR)定义为评估多元时间序列HOI的新指标,并提出了一个将其分解为量化Granger-Causal和瞬时影响的框架,并将其扩展到频域中。该框架利用了矢量自回归和状态空间模型的光谱表示,以评估特定频段和整个波段整合后的时间域中的过程组之间的协同和冗余相互作用。对模拟网络的验证说明了光谱OIR如何在特定频率下突出显示冗余和协同的HOI,而不是使用时间域测量值。在节奏呼吸期间在健康受试者中测量的心脏周期,动脉压和呼吸的生理网络的应用,以及在麻醉期间在动物实验中获得的ECOG信号所描述的脑网络,记录了我们的方法能力,可以识别与定义良好的心血管振荡和相关机制相关的信息通路和特定的体现的信息。所提出的框架允许对由多变量时间序列映射的网络中的时间和频域相互作用进行分层的评估,其高灵活性和可伸缩性使其适合于神经科学,生理学和其他领域的成对相互作用以外的网络进行研究。
While the standard network description of complex systems is based on quantifying links between pairs of system units, higher-order interactions (HOIs) involving three or more units play a major role in governing the collective network behavior. This work introduces an approach to quantify pairwise and HOIs for multivariate rhythmic processes interacting across multiple time scales. We define the so-called O-information rate (OIR) as a new metric to assess HOIs for multivariate time series, and propose a framework to decompose it into measures quantifying Granger-causal and instantaneous influences, as well as to expand it in the frequency domain. The framework exploits the spectral representation of vector autoregressive and state-space models to assess synergistic and redundant interactions among groups of processes, both in specific bands and in the time domain after whole-band integration. Validation on simulated networks illustrates how the spectral OIR can highlight redundant and synergistic HOIs emerging at specific frequencies but not using time-domain measures. The application to physiological networks described by heart period, arterial pressure and respiration measured in healthy subjects during paced breathing, and to brain networks described by ECoG signals acquired in an animal experiment during anesthesia, document the capability of our approach to identify informational circuits relevant to well-defined cardiovascular oscillations and brain rhythms and related to specific physiological mechanisms of autonomic control and altered consciousness. The proposed framework allows a hierarchically-organized evaluation of time- and frequency-domain interactions in networks mapped by multivariate time series, and its high flexibility and scalability make it suitable to investigate networks beyond pairwise interactions in neuroscience, physiology and other fields.