论文标题

随机对的近似同构

Approximate isomorphism of randomization pairs

论文作者

Hanson, James, Ibarlucía, Tomás

论文摘要

从连续逻辑的意义上讲,我们研究了近似$ \ aleph_0 $ - 随机化的理论的分类。 这导致我们通过展示$ \ aleph_0 $ -scaterical,$ \ aleph_0 $ - 稳定的度量理论$ q $,对相应理论$ q_p $ q_p $ q airs y y y aleph_0 $ -spatecor,i.e evecorial complatial note cymors,i.ee.e.e.e.e.e evaligor,这使我们通过展示$ \ aleph_0 $ -scategorical $ \ aleph_0 $ -spatecor,i.e.e.e.e.e.e.e.e evaligober,这使我们通过展示$ \ aleph_0 $ stable公制$ q $,甚至不是分开的模型。较小模型的扰动。这样的例子就是一个有限场上的随机无限矢量空间的理论$ q $。 从积极的一面来看,我们表明,美丽的随机无限套装的理论大约为$ \ aleph_0 $ - 分类。我们还证明,在这种情况下,相关的更强的财产在各种自然结构下是稳定的,并为普通案例制定了我们的猜测。

We study approximate $\aleph_0$-categoricity of theories of beautiful pairs of randomizations, in the sense of continuous logic. This leads us to disprove a conjecture of Ben Yaacov, Berenstein and Henson, by exhibiting $\aleph_0$-categorical, $\aleph_0$-stable metric theories $Q$ for which the corresponding theory $Q_P$ of beautiful pairs is not approximately $\aleph_0$-categorical, i.e., has separable models that are not isomorphic even up to small perturbations of the smaller model of the pair. The theory $Q$ of randomized infinite vector spaces over a finite field is such an example. On the positive side, we show that the theory of beautiful pairs of randomized infinite sets is approximately $\aleph_0$-categorical. We also prove that a related stronger property, which holds in that case, is stable under various natural constructions, and formulate our guesswork for the general case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源