论文标题

生成的多任务学习减轻目标引起的混杂

Generative multitask learning mitigates target-causing confounding

论文作者

Makino, Taro, Geras, Krzysztof J., Cho, Kyunghyun

论文摘要

我们提出了生成多任务学习(GMTL),这是一种简单且可扩展的方法,用于用于多任务学习的因果表示学习。我们的方法对传统的多任务推理目标进行了微小的更改,并提高了目标转移的鲁棒性。由于GMTL仅修改推理目标,因此可以与现有的多任务学习方法一起使用,而无需额外的培训。鲁棒性的改善来自减轻引起目标但不是输入的未观察到的混杂因素。我们将它们称为\ emph {target引起的混杂因素}。这些混淆者在输入和目标之间引起虚假依赖性。这对常规多任务学习构成了一个问题,因为它假设目标是有条件地独立的。 GMTL通过去除关节目标分布的影响并共同预测所有目标,从而减轻推理时引起的靶标的混杂。这消除了输入和目标之间的虚假依赖关系,其中可以通过单个高参数调节去除程度。这种灵活性对于管理分布概括和分布外概括之间的权衡很有用。我们对人和任务数据集的属性的结果反映了在四种多任务学习方法中目标转移的鲁棒性改善。

We propose generative multitask learning (GMTL), a simple and scalable approach to causal representation learning for multitask learning. Our approach makes a minor change to the conventional multitask inference objective, and improves robustness to target shift. Since GMTL only modifies the inference objective, it can be used with existing multitask learning methods without requiring additional training. The improvement in robustness comes from mitigating unobserved confounders that cause the targets, but not the input. We refer to them as \emph{target-causing confounders}. These confounders induce spurious dependencies between the input and targets. This poses a problem for conventional multitask learning, due to its assumption that the targets are conditionally independent given the input. GMTL mitigates target-causing confounding at inference time, by removing the influence of the joint target distribution, and predicting all targets jointly. This removes the spurious dependencies between the input and targets, where the degree of removal is adjustable via a single hyperparameter. This flexibility is useful for managing the trade-off between in- and out-of-distribution generalization. Our results on the Attributes of People and Taskonomy datasets reflect an improved robustness to target shift across four multitask learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源