论文标题

通过多尺度CNN学习相似性指标

Learning Similarity Metrics for Volumetric Simulations with Multiscale CNNs

论文作者

Kohl, Georg, Chen, Li-Wei, Thuerey, Nils

论文摘要

产生三维数据的模拟在科学中无处不在,从流体流到等离子物理学。我们提出了一个基于熵的相似性模型,该模型允许创建通过基于运输和基于运动的模拟产生的标量和矢量数据的相似性评估的物理意义的地面真相距离。利用从该模型得出的两种数据采集方法,我们创建了来自数值PDE求解器和现有仿真数据存储库的字段集合。此外,提出了计算体积相似性度量(VOLSIM)的多尺度CNN体系结构。据我们所知,这是一种固有旨在解决高维模拟数据相似性评估所带来的挑战的第一一种学习方法。此外,还研究了基于相关的损失功能的大批量大小与准确的相关计算之间的权衡,并分析了指标在旋转和规模操作方面的不变性。最后,在大量的测试数据以及一个特别具有挑战性的湍流案例研究中评估了VolSim的鲁棒性和概括,这与潜在的现实世界应用接近。

Simulations that produce three-dimensional data are ubiquitous in science, ranging from fluid flows to plasma physics. We propose a similarity model based on entropy, which allows for the creation of physically meaningful ground truth distances for the similarity assessment of scalar and vectorial data, produced from transport and motion-based simulations. Utilizing two data acquisition methods derived from this model, we create collections of fields from numerical PDE solvers and existing simulation data repositories. Furthermore, a multiscale CNN architecture that computes a volumetric similarity metric (VolSiM) is proposed. To the best of our knowledge this is the first learning method inherently designed to address the challenges arising for the similarity assessment of high-dimensional simulation data. Additionally, the tradeoff between a large batch size and an accurate correlation computation for correlation-based loss functions is investigated, and the metric's invariance with respect to rotation and scale operations is analyzed. Finally, the robustness and generalization of VolSiM is evaluated on a large range of test data, as well as a particularly challenging turbulence case study, that is close to potential real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源