论文标题
活跃学习的拉格朗日二重性方法
A Lagrangian Duality Approach to Active Learning
论文作者
论文摘要
我们考虑了基于池的主动学习问题,其中只有训练数据的一部分被标记,目标是查询一批未标记的样本以标记,以最大程度地提高模型性能。我们使用约束学习来提出问题,其中一组约束在标记的样本上界定了模型的性能。考虑到原始偶的方法,我们优化了与模型参数相对应的原始变量以及对应于约束的双变量。由于每个二变量表示相应约束的扰动如何影响目标函数的最佳值,因此我们将其用作相应训练样本的信息的代表。我们将我们称为通过拉格朗日二元性的积极学习的方法,或者盟友利用这一事实选择了一组不同的未标记样本,其中估计的双变量最高,作为我们的查询集。我们证明了方法在各种分类和回归任务中的好处,并根据所使用的模型的能力和数据集中的冗余程度讨论其局限性。我们还检查了由主动采样引起的分布变化的影响,并表明可以在生成模式下使用盟友来创建新颖的最大信息样本。
We consider the pool-based active learning problem, where only a subset of the training data is labeled, and the goal is to query a batch of unlabeled samples to be labeled so as to maximally improve model performance. We formulate the problem using constrained learning, where a set of constraints bounds the performance of the model on labeled samples. Considering a primal-dual approach, we optimize the primal variables, corresponding to the model parameters, as well as the dual variables, corresponding to the constraints. As each dual variable indicates how significantly the perturbation of the respective constraint affects the optimal value of the objective function, we use it as a proxy of the informativeness of the corresponding training sample. Our approach, which we refer to as Active Learning via Lagrangian dualitY, or ALLY, leverages this fact to select a diverse set of unlabeled samples with the highest estimated dual variables as our query set. We demonstrate the benefits of our approach in a variety of classification and regression tasks and discuss its limitations depending on the capacity of the model used and the degree of redundancy in the dataset. We also examine the impact of the distribution shift induced by active sampling and show that ALLY can be used in a generative mode to create novel, maximally-informative samples.