论文标题

紧张无序晶体中的首次接触断裂分布

First contact breaking distributions in strained disordered crystals

论文作者

Maharana, Roshan, Nampoothiri, Jishnu N., Ramola, Kabir

论文摘要

我们得出了菌株($ε$)的精确概率分布,在该菌株中,第一个应力下降事件发生在均匀应变的无序晶体中,并通过粒度多分散性引入淬火障碍。我们以数值和理论上的方式表征了这些第一个应力下降事件,并使用系统中的第一个触点破坏事件来识别它们。我们的理论结果是通过用于无序的Athermal软颗粒近结晶构型的准依量菌株的数值模拟来证实的。我们开发了一种通用技术,以确定首次应力下降事件的应变的$分布$,这是通过在第一次接触事件的累积分布与凸多属的体积之间进行的精确映射,其尺寸由系统中的缺陷$ n_d $确定。对于少量缺陷的系统,该多层体积的精确数值计算与通过直接数值模拟生成的菌株的分布相匹配。最后,假设单个接触破裂事件是不相关的,我们得出了发生首次应力下降的菌株的分布,从而准确地重现了从直接数值模拟获得的分布。

We derive exact probability distributions for the strain ($ε$) at which the first stress drop event occurs in uniformly strained disordered crystals, with quenched disorder introduced through polydispersity in particle sizes. We characterize these first stress drop events numerically as well as theoretically, and identify them with the first contact breaking event in the system. Our theoretical results are corroborated with numerical simulations of quasistatic volumetric strain applied to disordered near-crystalline configurations of athermal soft particles. We develop a general technique to determine the $distribution$ of strains at which the first stress drop events occur, through an exact mapping between the cumulative distribution of first contact breaking events and the volume of a convex polytope whose dimension is determined by the number of defects $N_d$ in the system. An exact numerical computation of this polytope volume for systems with small numbers of defects displays a remarkable match with the distribution of strains generated through direct numerical simulations. Finally, we derive the distribution of strains at which the first stress drop occurs, assuming that individual contact breaking events are uncorrelated, which accurately reproduces distributions obtained from direct numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源