论文标题

自我监督的对比度学习火山动荡检测

Self-supervised Contrastive Learning for Volcanic Unrest Detection

论文作者

Bountos, Nikolaos Ioannis, Papoutsis, Ioannis, Michail, Dimitrios, Anantrasirichai, Nantheera

论文摘要

通过干涉合成孔径雷达(INSAR)数据测量的地面变形被认为是火山动荡的迹象,在统计上与火山喷发相关。最近的研究表明,使用Sentinel-1 InsAR数据和监督深度学习(DL)方法检测火山变形信号的潜力,用于缓解全球火山危害。但是,由于缺乏标记的数据和类不平衡,检测准确性受到损害。为了克服这一点,合成数据通常用于在Imagenet数据集上预先训练的列出DL模型。这种方法遭受对实际INAR数据的概括不佳。这封信建议使用自我监督的对比学习学习隐藏在未标记的INS数据中的质量视觉表示。我们的方法基于SIMCLR框架,提供了一种解决方案,该解决方案不需要专门的体系结构,也不需要大型标记或合成数据集。我们表明,我们的自我监管管道相对于最先进的方法达到了更高的准确性,并且即使在分布外测试数据中也显示出极好的概括性。最后,我们展示了在最近的冰岛Fagradalsfjall火山喷发之前检测动乱发作的方法的有效性。

Ground deformation measured from Interferometric Synthetic Aperture Radar (InSAR) data is considered a sign of volcanic unrest, statistically linked to a volcanic eruption. Recent studies have shown the potential of using Sentinel-1 InSAR data and supervised deep learning (DL) methods for the detection of volcanic deformation signals, towards global volcanic hazard mitigation. However, detection accuracy is compromised from the lack of labelled data and class imbalance. To overcome this, synthetic data are typically used for finetuning DL models pre-trained on the ImageNet dataset. This approach suffers from poor generalisation on real InSAR data. This letter proposes the use of self-supervised contrastive learning to learn quality visual representations hidden in unlabeled InSAR data. Our approach, based on the SimCLR framework, provides a solution that does not require a specialized architecture nor a large labelled or synthetic dataset. We show that our self-supervised pipeline achieves higher accuracy with respect to the state-of-the-art methods, and shows excellent generalisation even for out-of-distribution test data. Finally, we showcase the effectiveness of our approach for detecting the unrest episodes preceding the recent Icelandic Fagradalsfjall volcanic eruption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源