论文标题
通过不变的集成改善深层分类网络的样品复杂性
Improving the Sample-Complexity of Deep Classification Networks with Invariant Integration
论文作者
论文摘要
利用有关转换引起的类内差异的先验知识是改善深神经网络样本复杂性的有力方法。这使它们适用于稀缺培训数据的实际重要用例。可以通过对这些转变实施不变性来嵌入这些知识,而不是被学到。可以使用集体等级的卷积施加不变性,然后进行集合操作。 对于旋转不变性,先前的工作研究了用不变的集成代替空间合并操作,该集成明确地构建了不变表示。不变的集成使用单一元素,使用需要昂贵预训练的迭代方法选择。我们提出了一种基于修剪方法的新型单次选择算法,以允许应用于更复杂的问题。此外,我们用不同的功能(例如加权总和,多层感知器和自我注意力)代替单一元素,从而简化基于不变性的构造的训练。 我们证明了在旋转的,SVHN和CIFAR-10数据集上的样品复杂性的提高,其中使用单条件的基于旋转不变的 - 综合构造构建和加权总结在有限的样品方案中优于各自的基础。我们使用旋转旋转和SVHN的完整数据实现了最先进的结果,其中旋转是类内变异的主要来源。在STL-10上,我们使用合并胜过标准和旋转等值的卷积神经网络。
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks. This makes them applicable to practically important use-cases where training data is scarce. Rather than being learned, this knowledge can be embedded by enforcing invariance to those transformations. Invariance can be imposed using group-equivariant convolutions followed by a pooling operation. For rotation-invariance, previous work investigated replacing the spatial pooling operation with invariant integration which explicitly constructs invariant representations. Invariant integration uses monomials which are selected using an iterative approach requiring expensive pre-training. We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems. Additionally, we replace monomials with different functions such as weighted sums, multi-layer perceptrons and self-attention, thereby streamlining the training of invariant-integration-based architectures. We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets where rotation-invariant-integration-based Wide-ResNet architectures using monomials and weighted sums outperform the respective baselines in the limited sample regime. We achieve state-of-the-art results using full data on Rotated-MNIST and SVHN where rotation is a main source of intraclass variation. On STL-10 we outperform a standard and a rotation-equivariant convolutional neural network using pooling.