论文标题
关于西布森的$α$ - 流浪信息
On Sibson's $α$-Mutual Information
论文作者
论文摘要
我们探索了一系列信息度量,这是源于Rényi的$α$ -Diverences,其$α<0 $。特别是,我们将Sibson的$α$ - 延误信息的定义扩展到$α$的负值,并显示这些对象的几个属性。此外,我们强调了该信息度量家族如何与可以在各个领域中使用的功能不平等有关,包括贝叶斯估计程序中风险的较低限制。
We explore a family of information measures that stems from Rényi's $α$-Divergences with $α<0$. In particular, we extend the definition of Sibson's $α$-Mutual Information to negative values of $α$ and show several properties of these objects. Moreover, we highlight how this family of information measures is related to functional inequalities that can be employed in a variety of fields, including lower-bounds on the Risk in Bayesian Estimation Procedures.