论文标题

用边界元素法的纳米级电磁学

Nanoscale electromagnetism with the boundary element method

论文作者

Hohenester, Ulrich, Unger, Gerhard

论文摘要

在Yang等人中。 [Nature 576,248(2019)],作者基于Feibelman参数引入了纳米级电磁作用的一般理论框架。这里,将光学激发电子在两种材料之间的界面上的量子效应将其集成为两个复合物值和频率依赖性参数,可以将其纳入麦克斯韦方程的修改边界条件中,即所谓的中镜边界条件。这些修改原则上可以将其插入任何麦克斯韦求解器中,尽管技术可以微妙并取决于所选的计算方法。在本文中,我们将基于带有raviart-thomas形状元素的盖尔金方案来展示如何在边界元素方法方法中实现介镜边界条件,以表示边界上切向电磁场的表示。我们证明,模拟的结果与包括Feibelman参数在内的MIE理论完全吻合,并且对于典型的仿真场景,计算开销通常很小。

In Yang et al. [Nature 576, 248 (2019)], the authors introduced a general theoretical framework for nanoscale electromagnetism based on Feibelman parameters. Here quantum effects of the optically excited electrons at the interface between two materials are lumped into two complex-valued and frequency-dependent parameters, which can be incorporated into modified boundary conditions for Maxwell's equations, the so-called mesoscopic boundary conditions. These modifications can in principle be implemeted in any Maxwell solver, although the technicalities can be subtle and depend on the chosen computational approach. In this paper we show how to implement the mesoscopic boundary conditions in a boundary element method approach, based on a Galerkin scheme with Raviart-Thomas shape elements for the representation of the tangential electromagnetic fields at the boundary. We demonstrate that the results of our simulations are in perfect agreement with Mie theory including Feibelman parameters, and that for typical simulation scenarios the computational overhead is usually small.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源