论文标题

验证辅助的深度合奏选择

Verification-Aided Deep Ensemble Selection

论文作者

Amir, Guy, Zelazny, Tom, Katz, Guy, Schapira, Michael

论文摘要

深度神经网络(DNN)已成为实现各种复杂任务的首选技术。但是,正如许多最近的研究所强调的那样,即使是对正确分类的输入的不可察觉的扰动也可能导致DNN错误分类。这使DNNS容易受到攻击者的战略输入操作,并且对环境噪声过敏。 为了减轻这种现象,从业人员通过DNNS的“合奏”进行联合分类。通过汇总不同单个DNN的分类输出相同的输入,基于合奏的分类可以降低因任何单个DNN的随机训练过程的特定实现而导致错误分类的风险。但是,DNN集合的有效性高度依赖于其成员 *在许多不同的输入上没有同时错误 *。 在此案例研究中,我们利用DNN验证的最新进展,设计了一种方法,即使输入对对抗性进行了扰动,也可以识别不容易同时误差的集成组合物,从而导致基于更稳定的集合分类。 我们提出的框架使用DNN验证器作为后端,并包括启发式方法,有助于降低直接验证合奏的高复杂性。从更广泛的角度来看,我们的工作提出了一个新颖的普遍目标,以实现正式验证,该目标可能可以改善各种应用领域的现实世界中基于深度学习的系统的鲁棒性。

Deep neural networks (DNNs) have become the technology of choice for realizing a variety of complex tasks. However, as highlighted by many recent studies, even an imperceptible perturbation to a correctly classified input can lead to misclassification by a DNN. This renders DNNs vulnerable to strategic input manipulations by attackers, and also oversensitive to environmental noise. To mitigate this phenomenon, practitioners apply joint classification by an *ensemble* of DNNs. By aggregating the classification outputs of different individual DNNs for the same input, ensemble-based classification reduces the risk of misclassifications due to the specific realization of the stochastic training process of any single DNN. However, the effectiveness of a DNN ensemble is highly dependent on its members *not simultaneously erring* on many different inputs. In this case study, we harness recent advances in DNN verification to devise a methodology for identifying ensemble compositions that are less prone to simultaneous errors, even when the input is adversarially perturbed -- resulting in more robustly-accurate ensemble-based classification. Our proposed framework uses a DNN verifier as a backend, and includes heuristics that help reduce the high complexity of directly verifying ensembles. More broadly, our work puts forth a novel universal objective for formal verification that can potentially improve the robustness of real-world, deep-learning-based systems across a variety of application domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源