论文标题

群体公平不是正义派生的:数学证明

Group Fairness Is Not Derivable From Justice: a Mathematical Proof

论文作者

Cangiotti, Nicolò, Loi, Michele

论文摘要

我们认为,如果“团体公平”涉及确保对所有无辜的被告独立于其道德任意的特征,就可以确保对所有无辜的被告有无罪释放或定罪的机会,就不能成为集体刑法。我们从数学上表明,只有一个完美的程序(无错误),一个非确定性的程序或退化的程序(每个人或没有人被定罪)可以保证团体公平,在一般情况下。按照最近的提议,我们采用了群体公平的定义,要求在统计学上与任何不算作优点独立于其功能的任何特征,都应该具有获得优势和缺点的相同统计机会。我们通过数学论点解释说,与所有非宣传性状有关的唯一不完善的程序是提供A-Priori的公平性保证的是彩票或退化的特征(即,每个人或没有人被定罪)。为了提供更直观的观点,我们利用了众所周知的ROC空间的调整,以通过示意图在我们的模型中表示所有可能的过程。只要不完美,该论点似乎对所有人类程序都是有效的。这显然包括算法决策,包括基于统计预测的决策,因为实际上所有统计模型都容易发生。

We argue that an imperfect criminal law procedure cannot be group-fair, if 'group fairness' involves ensuring the same chances of acquittal or convictions to all innocent defendants independently of their morally arbitrary features. We show mathematically that only a perfect procedure (involving no mistake), a non-deterministic one, or a degenerate one (everyone or no one is convicted) can guarantee group fairness, in the general case. Following a recent proposal, we adopt a definition of group fairness, requiring that individuals who are equal in merit ought to have the same statistical chances of obtaining advantages and disadvantages, in a way that is statistically independent of any of their feature that does not count as merit. We explain by mathematical argument that the only imperfect procedures offering an a-priori guarantee of fairness in relation to all non-merit trait are lotteries or degenerate ones (i.e., everyone or no one is convicted). To provide a more intuitive point of view, we exploit an adjustment of the well-known ROC space, in order to represent all possible procedures in our model by a schematic diagram. The argument seems to be equally valid for all human procedures, provided they are imperfect. This clearly includes algorithmic decision-making, including decisions based on statistical predictions, since in practice all statistical models are error prone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源