论文标题

平台试验的在线错误控制

Online error control for platform trials

论文作者

Robertson, David S., Wason, James M. S., König, Franz, Posch, Martin, Jaki, Thomas

论文摘要

平台试验评估了单个主协议下的多种实验治疗,随着时间的流逝,新的治疗臂添加到试验中。鉴于多次治疗比较,总体I类错误率的可能性可能会使假设在不同时间进行测试并且不一定都是预先指定的事实,这使它变得复杂。在线错误控制方法为平台试验的多样性问题提供了一种解决方案,预计随着时间的推移将对相对较大的假设进行测试。在在线测试框架中,以依次的方式对假设进行了检验,在每个时间步长下,分析人员决定是否拒绝当前的无原假设,而没有未来测试的知识,但仅基于过去的决策。最近已经开发了用于在线控制错误发现率以及家庭错误率(FWER)的方法。在本文中,我们描述了如何将在线错误控制应用于平台试验设置,呈现广泛的仿真结果,并为在实践中使用这种新方法提供了一些建议。我们表明,在线错误率控制的算法比未校正的测试的FWER可能大大低,同时与使用Bonferroni程序相比,仍然可以实现明显的上力。我们还说明在线错误控制将如何影响当前正在进行的平台试验。

Platform trials evaluate multiple experimental treatments under a single master protocol, where new treatment arms are added to the trial over time. Given the multiple treatment comparisons, there is the potential for inflation of the overall type I error rate, which is complicated by the fact that the hypotheses are tested at different times and are not all necessarily pre-specified. Online error control methodology provides a possible solution to the problem of multiplicity for platform trials where a relatively large number of hypotheses are expected to be tested over time. In the online testing framework, hypotheses are tested in a sequential manner, where at each time-step an analyst decides whether to reject the current null hypothesis without knowledge of future tests but based solely on past decisions. Methodology has recently been developed for online control of the false discovery rate as well as the familywise error rate (FWER). In this paper, we describe how to apply online error control to the platform trial setting, present extensive simulation results, and give some recommendations for the use of this new methodology in practice. We show that the algorithms for online error rate control can have a substantially lower FWER than uncorrected testing, while still achieving noticeable gains in power when compared with the use of a Bonferroni procedure. We also illustrate how online error control would have impacted a currently ongoing platform trial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源