论文标题

部分可观测时空混沌系统的无模型预测

Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks: A Deep Learning Approach

论文作者

Liu, Chang, Yuan, Weijie, Li, Shuangyang, Liu, Xuemeng, Ng, Derrick Wing Kwan, Li, Yonghui

论文摘要

集成感应和通信(ISAC)的实施高度取决于利用准确的瞬时通道状态信息(ICSI)的有效波束形成设计。但是,ISAC中的频道跟踪需要大量的训练开销,并且非常庞大的计算复杂性。为了解决这个问题,在本文中,我们专注于ISAC辅助的车辆网络,并利用一种深度学习的方法来隐式学习历史频道的特征,并直接预测下一个时间插槽的波束成式矩阵,以最大程度地提高系统的平均可实现的总和量,从而绕开了需要降低系统信号范围的透明频道跟踪的需求。为此,首先针对考虑的ISAC系统制定了基于CRAMER-RAO下限的传感限制的一般总和最大化问题。然后,基于历史频道的卷积长短期记忆网络设计用于预测波束成形,可以利用通信渠道的空间和时间依赖性以进一步提高学习绩效。最后,仿真结果表明,该提出的方法可以满足感应性能的要求,而其可实现的总和可以接近具有完美ICSI的Genie Aided方案获得的上限。

The implementation of integrated sensing and communication (ISAC) highly depends on the effective beamforming design exploiting accurate instantaneous channel state information (ICSI). However, channel tracking in ISAC requires large amount of training overhead and prohibitively large computational complexity. To address this problem, in this paper, we focus on ISAC-assisted vehicular networks and exploit a deep learning approach to implicitly learn the features of historical channels and directly predict the beamforming matrix for the next time slot to maximize the average achievable sum-rate of system, thus bypassing the need of explicit channel tracking for reducing the system signaling overhead. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system. Then, a historical channels-based convolutional long short-term memory network is designed for predictive beamforming that can exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed method can satisfy the requirement of sensing performance, while its achievable sum-rate can approach the upper bound obtained by a genie-aided scheme with perfect ICSI available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源