论文标题

系列生产矩阵的输出矩阵的系列多项式的系数汉克尔 - 总数阳性

Coefficientwise Hankel-total positivity of the row-generating polynomials for the output matrices of certain production matrices

论文作者

Zhu, Bao-Xuan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Total positivity of matrices is deeply studied and plays an important role in various branches of mathematics. The aim of this paper is to study the criteria for coefficientwise Hankel-total positivity of the row-generating polynomials of generalized $m$-Jacobi-Rogers triangles and their applications. Using the theory of production matrices, we present the criteria for coefficientwise Hankel-total positivity of the row-generating polynomials of the output matrices of certain production matrices. In particular, we gain a criterion for coefficientwise Hankel-total positivity of the row-generating polynomial sequence of the generalized $m$-Jacobi-Rogers triangle. This immediately implies that the corresponding generalized $m$-Jacobi-Rogers triangular convolution preserves the Stieltjes moment property of sequences and its zeroth column sequence is coefficientwise Hankel-totally positive and log-convex of higher order in all the indeterminates. In consequence, for $m=1$, we immediately obtain some results on Hankel-total positivity for the Catalan-Stieltjes matrices. In particular, we in a unified manner apply our results to some combinatorial triangles or polynomials including the generalized Jacobi Stirling triangle, a generalized elliptic polynomial, a refined Stirling cycle polynomial and a refined Eulerian polynomial. For the general $m$, combining our criterion and a function satisfying an autonomous differential equation, we present different criteria for coefficientwise Hankel-total positivity of the row-generating polynomial sequence of exponential Rirodan arrays. In addition, we also derive some results for coefficientwise Hankel-total positivity in terms of compositional functions and $m$-branched Stieltjes-type continued fractions. We apply our results to many combinatorial polynomials and solve some conjcetures proposed by Sokal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源