论文标题
分析多物种种群的分数交叉扩散系统
Analysis of a fractional cross-diffusion system for multi-species populations
论文作者
论文摘要
证明了整个空间中具有分数扩散的交叉扩散系统的全球时间存在。这些方程式描述了多物种种群在大距离相互作用方面的演变;它们是从与Lévy噪声的中等相互作用的粒子系统中得出的。存在证明基于三级近似方案,熵和力矩估计以及整个空间中新的Aubin-Lions紧凑型引理。
The global in time existence of weak solutions to a cross-diffusion system with fractional diffusion in the whole space is proved. The equations describe the evolution of multi-species populations in the regime of large-distance interactions; they have been derived in the many-particle limit from moderately interacting particle systems with Lévy noise. The existence proof is based on a three-level approximation scheme, entropy and moment estimates, and a new Aubin-Lions compactness lemma in the whole space.