论文标题
磁分子中的自旋光子松弛:理论,预测和见解
Spin-Phonon Relaxation in Magnetic Molecules: Theory, Predictions and Insights
论文作者
论文摘要
磁分子在磁性和协调化学的发展中起着核心作用,他们的研究在诸如磁共振,磁性,旋转型和量子技术等尖端的科学领域中保持了领先的创新。至关重要的是,对于所有这些应用,远高于低温温度的长期旋转寿命是一个严格的要求。在本章中,我们回顾了自旋松弛理论的基础,并详细概述了用于磁分子中自旋 - 音波松弛问题的第一原理策略。首先,我们基于开放量子系统理论提出了一种严格的自旋光松弛形式。然后,这些结果用于基于Debye模型得出经典的现象学关系。最后,我们提供了如何将松弛形式主义映射到现有电子结构方法上的处方,以获得自旋 - 音波弛豫的定量图片。将讨论文献中的例子,包括过渡金属和灯笼化合物,以说明直接,奥尔巴赫和拉曼放松机制如何影响这类化合物的旋转动力学。
Magnetic molecules have played a central role in the development of magnetism and coordination chemistry and their study keeps leading innovation in cutting-edge scientific fields such as magnetic resonance, magnetism, spintronics, and quantum technologies. Crucially, a long spin lifetime well above cryogenic temperature is a stringent requirement for all these applications. In this chapter we review the foundations of spin relaxation theory and provide a detailed overview of first-principles strategies applied to the problem of spin-phonon relaxation in magnetic molecules. Firstly, we present a rigorous formalism of spin-phonon relaxation based on open quantum systems theory. These results are then used to derive classical phenomenological relations based on the Debye model. Finally, we provide a prescription of how to map the relaxation formalism onto existing electronic structure methods to obtain a quantitative picture of spin-phonon relaxation. Examples from the literature, including both transition metals and lanthanides compounds, will be discussed in order to illustrate how Direct, Orbach and Raman relaxation mechanisms can affect spin dynamics for this class of compounds.