论文标题
渐近生长和二维对称等离子体的衰变
Asymptotic Growth and Decay of Two-Dimensional Symmetric Plasmas
论文作者
论文摘要
我们研究了二维Vlasov-Poisson(VP)和相对论Vlasov-Poisson(RVP)系统的较大时间行为,该系统由径向超对准的初始数据启动,并具有紧凑的支持。特别是,我们证明粒子位置和动量无限为$ t \ to \ infty $,并在每个系统的分布函数支持分布函数的支持下,以这些数量的最大值获得尖锐的速率。此外,我们在相关的电场上建立了几乎急剧的衰减速率,以及在较大的时间限制中电荷密度的衰减速率上的上和下限。我们证明,与较高维度不同的(VP)不同,平滑的解决方案不会将其自由流的轮廓散布为$ t \ to \ infty $,因为非线性的远程野外相互作用占据了由于从电势到动力学术语的能量交换而导致特征的行为。这样,系统可能会“忘记”粒子的任何先前配置。
We study the large time behavior of classical solutions to the two-dimensional Vlasov-Poisson (VP) and relativistic Vlasov-Poisson (RVP) systems launched by radially-symmetric initial data with compact support. In particular, we prove that particle positions and momenta grow unbounded as $t \to \infty$ and obtain sharp rates on the maximal values of these quantities on the support of the distribution function for each system. Furthermore, we establish nearly sharp rates of decay for the associated electric field, as well as upper and lower bounds on the decay rate of the charge density in the large time limit. We prove that, unlike (VP) in higher dimensions, smooth solutions do not scatter to their free-streaming profiles as $t \to \infty$ because nonlinear, long-range field interactions dominate the behavior of characteristics due to the exchange of energy from the potential to the kinetic term. In this way, the system may "forget" any previous configuration of particles.