论文标题

低容量通道的一类Reed-Muller子代码的低复杂性解码

Low-Complexity Decoding of a Class of Reed-Muller Subcodes for Low-Capacity Channels

论文作者

Jamali, Mohammad Vahid, Fereydounian, Mohammad, Mahdavifar, Hessam, Hassani, Hamed

论文摘要

我们为基于较小的RM代码的乘积定义的一类Reed-Muller(RM)子代码提供了低复杂性和低延迟解码算法。更具体地说,输入序列被形成为多维数组,并且每个维度上的编码是通过较小的RM编码单独完成的。同样,对于较小的RM代码,通过低复杂性解码器在每个维度上执行解码。拟议的构造特别是与新兴的低利率通信方案相关的低容量渠道。我们为RM代码的乘积提供了有效的软输入软输出(SISO)迭代解码算法,并证明了与RM代码组件的硬解码相比,其优越性。所提出的编码方案具有$ \ Mathcal {O}(n \ log n)$的解码(以及编码)的复杂性,而$ \ Mathcal {o}的延迟(\ log n)$对于blockLength $ n $。这项研究为有效解码RM代码提供了一个一般框架。

We present a low-complexity and low-latency decoding algorithm for a class of Reed-Muller (RM) subcodes that are defined based on the product of smaller RM codes. More specifically, the input sequence is shaped as a multi-dimensional array, and the encoding over each dimension is done separately via a smaller RM encoder. Similarly, the decoding is performed over each dimension via a low-complexity decoder for smaller RM codes. The proposed construction is of particular interest to low-capacity channels that are relevant to emerging low-rate communication scenarios. We present an efficient soft-input soft-output (SISO) iterative decoding algorithm for the product of RM codes and demonstrate its superiority compared to hard decoding over RM code components. The proposed coding scheme has decoding (as well as encoding) complexity of $\mathcal{O}(n\log n)$ and latency of $\mathcal{O}(\log n)$ for blocklength $n$. This research renders a general framework toward efficient decoding of RM codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源