论文标题

能源效率和延迟在支持MEC的移动物联网网络中进行权衡

Energy Efficiency and Delay Tradeoff in an MEC-Enabled Mobile IoT Network

论文作者

Hu, Han, Song, Weiwei, Wang, Qun, Hu, Rose Qingyang, Zhu, Hongbo

论文摘要

移动边缘计算(MEC)最近成为5G时代的一项有前途的技术。它被认为是一个有效的范式,即使在能源约束和计算有限的物联网(IoT)设备上,也可以支持计算密集型和延迟关键应用程序。为了有效利用MEC启用的性能优势,必须通过考虑非平稳计算需求,用户移动性和无线褪色渠道来共同分配无线电和计算资源。本文旨在研究多用户多服务器MEC启用MEC IoT系统的能源效率(EE)和服务延迟之间的权衡,以在用户移动性方案中提供卸载服务时。特别是,我们制定了一个随机优化问题,其目的是将长期平均网络EE与任务队列稳定性,峰值传输功率,最大CPU周期频率和最大用户数的限制最小化。为了解决这个问题,我们通过将原始问题转换为基于Lyapunov优化理论的每个时插槽中的几个单独的子问题,提出了一种在线卸载和资源分配算法,然后通过凸面分解和subsodular方法来解决。理论分析证明,拟议的算法可以实现EE和服务延迟之间的$ [o(1/v),o(v)] $权衡。仿真结果验证了理论分析并证明我们提出的算法可以在任务卸载挑战中提供更好的EE-delay绩效,与几个基线相比。

Mobile Edge Computing (MEC) has recently emerged as a promising technology in the 5G era. It is deemed an effective paradigm to support computation-intensive and delay critical applications even at energy-constrained and computation-limited Internet of Things (IoT) devices. To effectively exploit the performance benefits enabled by MEC, it is imperative to jointly allocate radio and computational resources by considering non-stationary computation demands, user mobility, and wireless fading channels. This paper aims to study the tradeoff between energy efficiency (EE) and service delay for multi-user multi-server MEC-enabled IoT systems when provisioning offloading services in a user mobility scenario. Particularly, we formulate a stochastic optimization problem with the objective of minimizing the long-term average network EE with the constraints of the task queue stability, peak transmit power, maximum CPU-cycle frequency, and maximum user number. To tackle the problem, we propose an online offloading and resource allocation algorithm by transforming the original problem into several individual subproblems in each time slot based on Lyapunov optimization theory, which are then solved by convex decomposition and submodular methods. Theoretical analysis proves that the proposed algorithm can achieve a $[O(1/V), O(V)]$ tradeoff between EE and service delay. Simulation results verify the theoretical analysis and demonstrate our proposed algorithm can offer much better EE-delay performance in task offloading challenges, compared to several baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源