论文标题
NXTPOST:用户可以在Facebook组中发布建议
NxtPost: User to Post Recommendations in Facebook Groups
论文作者
论文摘要
在本文中,我们介绍了NXTPOST,这是一种针对Facebook组的部署的基于用户到基础的顺序推荐系统。受NLP最新进展的启发,我们将基于变压器的模型调整为顺序建议的领域。我们探讨了因果掩盖的多头关注,以优化短期和长期用户兴趣。从用户的过去活动通过定义的安全过程验证,NXTPOST寻求学习用户的动态内容偏好的表示形式,并预测下一个帖子用户可能感兴趣。与以前的基于变压器的方法相比,我们不认为推荐的帖子具有固定的语料库。因此,我们使用外部项目/令牌嵌入将基于序列的方法扩展到大型词汇。我们达到49%的ABS。离线评估的改进。由于NXTPOST的部署,有0.6%的用户正在与新朋友见面,与社区互动,共享知识并获得支持。该论文分享了我们在开发个性化的顺序推荐系统,为冷启动用户部署模型的经验,如何处理新鲜度以及调整策略以达到在线A/B实验中提高效率的效率。
In this paper, we present NxtPost, a deployed user-to-post content-based sequential recommender system for Facebook Groups. Inspired by recent advances in NLP, we have adapted a Transformer-based model to the domain of sequential recommendation. We explore causal masked multi-head attention that optimizes both short and long-term user interests. From a user's past activities validated by defined safety process, NxtPost seeks to learn a representation for the user's dynamic content preference and to predict the next post user may be interested in. In contrast to previous Transformer-based methods, we do not assume that the recommendable posts have a fixed corpus. Accordingly, we use an external item/token embedding to extend a sequence-based approach to a large vocabulary. We achieve 49% abs. improvement in offline evaluation. As a result of NxtPost deployment, 0.6% more users are meeting new people, engaging with the community, sharing knowledge and getting support. The paper shares our experience in developing a personalized sequential recommender system, lessons deploying the model for cold start users, how to deal with freshness, and tuning strategies to reach higher efficiency in online A/B experiments.