论文标题
布尔观察游戏
Boolean Observation Games
论文作者
论文摘要
我们介绍了布尔观察游戏,这是一个有限的战略游戏的子类,具有不完整的信息和定性目标。在布尔观察游戏中,每个玩家都与一组有限的命题变量相关联,只有它才能观察该值,并且它控制着它是否可以揭示该价值。它不能控制给定的变量的固定值。布尔观察游戏是布尔游戏的概括,这是一个经过良好研究的战略游戏子类,但具有完整的信息,每个玩家都控制了变量的价值。 在布尔观察游戏中,玩家目标描述了变量的多代理知识。就像在古典战略游戏中一样,玩家同时选择他们的策略,因此观察游戏捕获了不完美和不完整信息的各个方面。他们需要有关一组结果的推理,给定的变量不可分割的估值。这种集合之间的结果关系决定了纳什均衡。我们提出了各种结果关系,包括前柱平衡的定性变体。我们确定在结果的条件下,鉴于结局关系,保证纳什均衡存在。我们还研究了检查NASH平衡存在的复杂性,并验证策略概况是否为NASH平衡。我们进一步研究了布尔观察游戏的子类,其中“知道”目标公式是否取决于变量的价值。我们表明,每个这样的布尔观测游戏都对应于布尔游戏,反之亦然,而副人的信件则相对于纳什·耶利尔里亚(Nash Eqeilibria)的存在而言,这两种通信都是精确的。
We introduce Boolean Observation Games, a subclass of multi-player finite strategic games with incomplete information and qualitative objectives. In Boolean observation games, each player is associated with a finite set of propositional variables of which only it can observe the value, and it controls whether and to whom it can reveal that value. It does not control the given, fixed, value of variables. Boolean observation games are a generalization of Boolean games, a well-studied subclass of strategic games but with complete information, and wherein each player controls the value of its variables. In Boolean observation games, player goals describe multi-agent knowledge of variables. As in classical strategic games, players choose their strategies simultaneously and therefore observation games capture aspects of both imperfect and incomplete information. They require reasoning about sets of outcomes given sets of indistinguishable valuations of variables. An outcome relation between such sets determines what the Nash equilibria are. We present various outcome relations, including a qualitative variant of ex-post equilibrium. We identify conditions under which, given an outcome relation, Nash equilibria are guaranteed to exist. We also study the complexity of checking for the existence of Nash equilibria and of verifying if a strategy profile is a Nash equilibrium. We further study the subclass of Boolean observation games with `knowing whether' goal formulas, for which the satisfaction does not depend on the value of variables. We show that each such Boolean observation game corresponds to a Boolean game and vice versa, by a different correspondence, and that both correspondences are precise in terms of existence of Nash equilibria.