论文标题
电子和几何结构的协同调节导致石墨烯样硼化物的超低导热率(G-B3x5,x = n,p,AS)
The synergistic modulation of electronic and geometry structures leads to ultra-low thermal conductivity of graphene-like borides (g-B3X5, X=N, P, As)
论文作者
论文摘要
通过调节结构特性和键合特性的新型设备具有特定技术兴趣的新设备的设计促进了材料信息学的有力开发。本文中,我们通过结合几何配置和键合特性提出了组件重建的协同策略。通过协同策略,我们设计了一种新型的二维(2D)石墨烯状的硼化物,例如G-B3N5,尽管原子质量较小,但具有反直觉的超低热电导率为21.08 w/mk。超低的热导率归因于由于G-BN和氮的重建,电子和几何形状对热传输的协同作用。通过协同作用,主要的声学分支被强烈软化,并且散射吸收和umklapp过程同时被抑制。因此,导热率显着降低。为了验证组件重建策略,我们进一步构建了G-B3P5和G-B3AS5,并分别揭示了2.50和1.85 W/MK的超低热电导率。协同效应和设计的超低热导率材料具有轻巧的原子质量,以满足动量机械和热保护的光的需求,例如航空航天车,高速导轨,汽车。
The design of novel devices with specific technical interests through modulating structural properties and bonding characteristics promotes the vigorous development of materials informatics. Herein, we propose a synergy strategy of component reconstruction by combining geometric configuration and bonding characteristics. With the synergy strategy, we designed a novel two-dimensional (2D) graphene-like borides, e.g. g-B3N5, which possesses counter-intuitive ultra-low thermal conductivity of 21.08 W/mK despite the small atomic mass. The ultra-low thermal conductivity is attributed to the synergy effect of electronics and geometry on thermal transport due to the combining reconstruction of g-BN and nitrogene. With the synergy effect, the dominant acoustic branches are strongly softened, and the scattering absorption and Umklapp process are simultaneously suppressed. Thus, the thermal conductivity is significantly lowered. To verify the component reconstruction strategy, we further constructed g-B3P5 and g-B3As5, and uncovered the ultra-low thermal conductivity of 2.50 and 1.85 W/mK, respectively. The synergy effect and the designed ultra-low thermal conductivity materials with lightweight atomic mass cater to the demand for light development of momentum machinery and heat protection, such as aerospace vehicles, high-speed rail, automobiles.