论文标题

光学谐振器的数据驱动设计

Data driven design of optical resonators

论文作者

Lenaerts, Joeri, Pinson, Hannah, Ginis, Vincent

论文摘要

光学设备是我们周围看到的大多数技术的核心。当一个人真正想制作这样的光学设备时,可以使用Maxwell方程的计算模拟来预测其光学行为。如果一个人询问要获得一定的光学行为的最佳设计是什么,那么进一步进行的唯一方法是尝试所有可能的设计并计算它们产生的电磁频谱。当有许多设计参数时,这种蛮力方法在计算上很快变得太昂贵了。因此,我们需要其他方法来创建最佳的光学设备。蛮力方法的替代方法是反设计。在此范式中,一个从材料的所需光学响应开始,然后确定获得此光学响应所需的设计参数。文献中已知的许多算法实现了这种反设计。一些表现最好的,最近的方法是基于深度学习。核心思想是训练神经网络,以预测给定设计参数的光学响应。由于神经网络是完全不同的,因此我们可以根据设计参数来计算响应的梯度。我们可以使用这些梯度来更新设计参数,并更接近我们想要的光学响应。与蛮力方法相比,这使我们能够更快地获得最佳设计。在论文中,我使用深度学习进行Fabry-Pérot谐振器的逆设计。该系统可以在分析上进行全面描述,因此是理想的研究。

Optical devices lie at the heart of most of the technology we see around us. When one actually wants to make such an optical device, one can predict its optical behavior using computational simulations of Maxwell's equations. If one then asks what the optimal design would be in order to obtain a certain optical behavior, the only way to go further would be to try out all of the possible designs and compute the electromagnetic spectrum they produce. When there are many design parameters, this brute force approach quickly becomes too computationally expensive. We therefore need other methods to create optimal optical devices. An alternative to the brute force approach is inverse design. In this paradigm, one starts from the desired optical response of a material and then determines the design parameters that are needed to obtain this optical response. There are many algorithms known in the literature that implement this inverse design. Some of the best performing, recent approaches are based on Deep Learning. The central idea is to train a neural network to predict the optical response for given design parameters. Since neural networks are completely differentiable, we can compute gradients of the response with respect to the design parameters. We can use these gradients to update the design parameters and get an optical response closer to the one we want. This allows us to obtain an optimal design much faster compared to the brute force approach. In my thesis, I use Deep Learning for the inverse design of the Fabry-Pérot resonator. This system can be described fully analytically and is therefore ideal to study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源