论文标题
较高分析点级的强型旋转定理
The strong Spector-Gandy Theorem for the higher analytical pointclasses
论文作者
论文摘要
假设投影性的决定性,我们将Spector的Spector-Gandy定理的强大版本扩展到了投影层次结构的所有奇数级别: 定理。对于每个空间$ x $,这是自然数量$ n $和baire space $ n^n $的有限产品,如果$ p $是$π^1_ {2n+1} $ $ x $的子集,那么就有$π^1_ {2n} $ q $ $ p(x)\ longLeftrightArrow(\存在!α)q(x,α)\ longleftrightArrow(\existsα\inΔ^^1_ {2n+1}(x)(x))q(x,α)$。
Assuming projective determinacy, we extend Spector's strong version of the Spector-Gandy Theorem to all odd levels of the projective hierarchy: Theorem. For every space $X$ which is a finite product of the natural numbers $N$ and Baire space $N^N$ and for every n, if $P$ is a $Π^1_{2n+1}$ subset of $X$, then there is a $Π^1_{2n}$ set $Q$ such that $P(x) \Longleftrightarrow (\exists!α)Q(x,α) \Longleftrightarrow (\existsα\inΔ^1_{2n+1}(x))Q(x,α)$.