论文标题

贝叶斯同胞和杂词层析成像

Bayesian homodyne and heterodyne tomography

论文作者

Chapman, Joseph C., Lukens, Joseph M., Qi, Bing, Pooser, Raphael C., Peters, Nicholas A.

论文摘要

连续变量(CV)光子状态对量子信息科学的兴趣越来越大,并由确定性资源状态的产生和通过肺泡代码校正诸如诸如确定性资源状态的产生和误差校正。数据有效的表征方法将证明对此类简历量子技术的微调和成熟至关重要。尽管贝叶斯推论提供了吸引人的特性 - 包括均值错误的不确定性量化和最佳性,贝叶斯方法尚未证明用于任意简历状态的层析成像。在这里,我们介绍了一个完整的贝叶斯量子层层析成像工作流程,能够推断通过同源或异差检测测量的通用CV状态,而没有高斯性。作为示例,我们证明了我们对实验相干,热和CAT状态数据的方法,并在我们的贝叶斯估计和理论预测之间获得了极好的一致性。我们的方法为贝叶斯对新兴量子光子平台(例如量子通信网络和传感器)中高度复杂的CV量子状态的估算奠定了基础。

Continuous-variable (CV) photonic states are of increasing interest in quantum information science, bolstered by features such as deterministic resource state generation and error correction via bosonic codes. Data-efficient characterization methods will prove critical in the fine-tuning and maturation of such CV quantum technology. Although Bayesian inference offers appealing properties -- including uncertainty quantification and optimality in mean-squared error -- Bayesian methods have yet to be demonstrated for the tomography of arbitrary CV states. Here we introduce a complete Bayesian quantum state tomography workflow capable of inferring generic CV states measured by homodyne or heterodyne detection, with no assumption of Gaussianity. As examples, we demonstrate our approach on experimental coherent, thermal, and cat state data, obtaining excellent agreement between our Bayesian estimates and theoretical predictions. Our approach lays the groundwork for Bayesian estimation of highly complex CV quantum states in emerging quantum photonic platforms, such as quantum communications networks and sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源