论文标题
没有那么多的摩拉瓦理论
There aren't that many Morava E-theories
论文作者
论文摘要
让$ k $是一个特征性$ p $的完美领域。与任何(一维,交换性的)正式群体定律相关,有限高度$ n $ $ k $都有一个复杂的定向的共同体学理论,该理论由表示$ e(n)$的频谱代表,通常称为Morava $ e $ $ $ - 理论。众所周知,这些光谱会接受$ e_ \ infty $ - 结构,并且已经对$ e_ \ infty $结构的依赖性进行了很好的研究(参见\ [gh],[r],[l],[l],第5节,[pv])。在本说明中,我们表明,$ e(n)$的潜在同型类型独立于选择正式的团体法律。
Let $k$ be a perfect field of characteristic $p$. Associated to any (1-dimensional, commutative) formal group law of finite height $n$ over $k$ there is a complex oriented cohomology theory represented by a spectrum denoted $E(n)$ and commonly referred to as Morava $E$-theory. These spectra are known to admit $E_\infty$-structures, and the dependence of the $E_\infty$-structure on the choice of formal group law has been well studied (cf.\ [GH], [R], [L], Section 5, [PV]). In this note we show that the underlying homotopy type of $E(n)$ is independent of the choice of formal group law.