论文标题
Airnn:通过可重新配置的智能表面进行空中卷积的神经网络
AirNN: Neural Networks with Over-the-Air Convolution via Reconfigurable Intelligent Surfaces
论文作者
论文摘要
无线模拟计算允许通过精心构造的传输信号将计算卸载到无线环境。在本文中,我们设计和实施了首先的空中卷积,并在卷积神经网络(CNN)中进行推理任务。我们通过可重新配置的智能表面(RIS)来设计环境无线传播环境,以设计这样的架构,我们称之为“ airnn”。 Airnn利用波浪反射的物理学代表模拟域中的数字卷积,是CNN结构的重要组成部分。与经典通信相反,接收器必须对通道诱导的转换反应,通常表示为有限脉冲响应(FIR)滤波器,AIRNN主动创建了信号反射以通过RIS模拟特定的FIR滤波器。 Airnn涉及两个步骤:首先,CNN中神经元的重量是从有限的通道脉冲响应集(CIR)中得出的,该响应(CIR)与可实现的FIR过滤器相对应。其次,每个CIR都是通过RI设计的,并且反射信号在接收器上合并以确定卷积的输出。本文通过实验证明了空中卷积,介绍了AIRNN的概念验证。然后,我们通过模拟验证整个CNN模型的精度,以进行调制分类的示例任务。
Over-the-air analog computation allows offloading computation to the wireless environment through carefully constructed transmitted signals. In this paper, we design and implement the first-of-its-kind over-the-air convolution and demonstrate it for inference tasks in a convolutional neural network (CNN). We engineer the ambient wireless propagation environment through reconfigurable intelligent surfaces (RIS) to design such an architecture, which we call 'AirNN'. AirNN leverages the physics of wave reflection to represent a digital convolution, an essential part of a CNN architecture, in the analog domain. In contrast to classical communication, where the receiver must react to the channel-induced transformation, generally represented as finite impulse response (FIR) filter, AirNN proactively creates the signal reflections to emulate specific FIR filters through RIS. AirNN involves two steps: first, the weights of the neurons in the CNN are drawn from a finite set of channel impulse responses (CIR) that correspond to realizable FIR filters. Second, each CIR is engineered through RIS, and reflected signals combine at the receiver to determine the output of the convolution. This paper presents a proof-of-concept of AirNN by experimentally demonstrating over-the-air convolutions. We then validate the entire resulting CNN model accuracy via simulations for an example task of modulation classification.