论文标题
扭曲的C型托架
Twisted C-brackets
论文作者
论文摘要
我们考虑了封闭的骨弦理论的双场公式,并计算了管理通用坐标和局部仪表转换的对称发电机的泊松支架代数。这两个对称的参数都取决于双坐标,该坐标定义为初始和t偶坐标的直接总和。当不存在反对称场时,$ c $ - 支架在双重理论中以谎言支架的概括而出现。随着Kalb-Ramond Field的引入,出现了$ b $ twist的$ c $ - 支架,而随着非交换性参数的引入,出现了$θ$ -twisted $ c $ -bracket。我们介绍了这些括号的推导,并评论了它们与类似扭曲的courant括号和T偶性的关系。
We consider the double field formulation of the closed bosonic string theory, and calculate the Poisson bracket algebra of the symmetry generators governing both general coordinate and local gauge transformations. Parameters of both of these symmetries depend on a double coordinate, defined as a direct sum of the initial and T-dual coordinate. When no antisymmetric field is present, the $C$-bracket appears as the Lie bracket generalization in a double theory. With the introduction of the Kalb-Ramond field, the $B$-twisted $C$-bracket appears, while with the introduction of the non-commutativity parameter, the $θ$-twisted $C$-bracket appears. We present the derivation of these brackets and comment on their relations to analogous twisted Courant brackets and T-duality.