论文标题
加权的相对旋转式 - 巴克斯特运算符在Leibniz代数和leibniz后代数结构上
Weighted relative Rota-Baxter operators on Leibniz algebras and Post-Leibniz algebra structures
论文作者
论文摘要
Leibniz代数是谎言代数的非对称类似物。在本文中,我们考虑了Leibniz代数上的加权相对Rota-Baxter操作员。我们将这种操作员的共同体学定义为应用,我们研究了它们的变形。最后,我们介绍并研究了leibniz后代数作为加权相对旋转式算子的结构。
Leibniz algebras are non-skewsymmetric analogue of Lie algebras. In this paper, we consider weighted relative Rota-Baxter operators on Leibniz algebras. We define cohomology of such operators and as an application, we study their deformations. Finally, we introduce and study post-Leibniz algebras as the structure behind weighted relative Rota-Baxter operators.