论文标题
用于沙尘图像重建的全面基准分析
A comprehensive benchmark analysis for sand dust image reconstruction
论文作者
论文摘要
近年来已经提出了许多沙尘图像增强算法。然而,据我们最好地承认,大多数方法都使用Internet中几个精选的现实世界图像以无参考的方式评估了其性能。目前尚不清楚如何以有监督的方式定量分析算法的性能,以及如何评估现场的进度。此外,由于缺乏大规模基准数据集,迄今为止,尚无关于基于数据驱动的方法来增强基于数据驱动的方法的知名报告。为了推动开发基于深度学习的算法以进行沙尘图像重建,同时可以对算法性能进行监督的客观评估。在本文中,我们介绍了一项全面的感知研究和对现实世界沙尘图像的分析,然后构建了用于训练卷积神经网络(CNN)并评估算法性能的砂盘图像重建基准(SIRB)。此外,我们采用了在SIRB上培训的现有图像转换神经网络作为基线,以说明SIRB对CNN的概括。最后,我们进行了定性和定量评估,以证明最先进的(SOTA)的性能和局限性,这揭示了砂尘图像重建中未来的研究。
Numerous sand dust image enhancement algorithms have been proposed in recent years. To our best acknowledge, however, most methods evaluated their performance with no-reference way using few selected real-world images from internet. It is unclear how to quantitatively analysis the performance of the algorithms in a supervised way and how we could gauge the progress in the field. Moreover, due to the absence of large-scale benchmark datasets, there are no well-known reports of data-driven based method for sand dust image enhancement up till now. To advance the development of deep learning-based algorithms for sand dust image reconstruction, while enabling supervised objective evaluation of algorithm performance. In this paper, we presented a comprehensive perceptual study and analysis of real-world sand dust images, then constructed a Sand-dust Image Reconstruction Benchmark (SIRB) for training Convolutional Neural Networks (CNNs) and evaluating algorithms performance. In addition, we adopted the existing image transformation neural network trained on SIRB as baseline to illustrate the generalization of SIRB for training CNNs. Finally, we conducted the qualitative and quantitative evaluation to demonstrate the performance and limitations of the state-of-the-arts (SOTA), which shed light on future research in sand dust image reconstruction.