论文标题

基于SARS-COV-2废水的数据建模食谱

Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology

论文作者

Rauch, Wolfgang, Schenk, Hannes, Insam, Heribert, Markt, Rudolf, Kreuzinger, Norbert

论文摘要

基于废水的流行病学被认为是监测支柱之一,为大流行管理提供了基本信息。该方法中的中心是用于传达监视结果的数据建模概念,也用于分析信号。由于该领域的快速发展,使用了一系列建模概念,但没有连贯的框架。本文提供了这样一个框架,专注于易于适用的健壮和简单概念,而不是应用机器学习中的最新发现。已经证明,数据预处理,通过生物标志物的最重要归一化以及散射数据的等等时间间距至关重要。就后者而言,对每周间距系列的缩写就足够了。同样,数据平滑事实证明是必不可少的,不仅对于信号动力学的通信,而且对于回归,现象和预测也是如此。信号与流行指标的相关性需要多元回归,因为单独信号不能解释动态,而是简单的线性回归证明是补偿的合适工具。还证明,短期预测(7天)具有简单模型(指数平滑或自回归模型)的准确性,但预测准确性会在更长的时间内快速恶化。

Wastewater based epidemiology is recognized as one of the monitoring pillars, providing essential information for pandemic management. Central in the methodology are data modelling concepts for both communicating the monitoring results but also for analysis of the signal. It is due to the fast development of the field that a range of modelling concepts are used but without a coherent framework. This paper provides for such a framework, focusing on robust and simple concepts readily applicable, rather than applying latest findings from e.g., machine learning. It is demonstrated that data preprocessing, most important normalization by means of biomarkers and equal temporal spacing of the scattered data, is crucial. In terms of the latter, downsampling to a weekly spaced series is sufficient. Also, data smoothing turned out to be essential, not only for communication of the signal dynamics but likewise for regressions, nowcasting and forecasting. Correlation of the signal with epidemic indicators require multivariate regression as the signal alone cannot explain the dynamics but simple linear regression proofed to be a suitable tool for compensation. It was also demonstrated that short term prediction (7 days) is accurate with simple models (exponential smoothing or autoregressive models) but forecast accuracy deteriorates fast for longer periods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源