论文标题

具有多个库存的竞争性在线优化:一种分裂和互动方法

Competitive Online Optimization with Multiple Inventories: A Divide-and-Conquer Approach

论文作者

Lin, Qiulin, Mo, Yanfang, Su, Junyan, Chen, Minghua

论文摘要

我们研究了有多个库存的竞争性在线优化问题。在这个问题中,在线决策者试图优化在槽范围内的多个容量限制库存的分配,而分配约束和收入功能在每个插槽上都在线。这个问题是具有挑战性的,因为我们需要在对抗收入功能和分配约束下分配有限的库存,而我们的决策是在多个库存和不同的插槽中耦合的。我们提出了一种分裂和争议的方法,使我们能够将问题分解为几个单一的库存问题,并以两步的方式解决它,而在竞争比率(CR)方面几乎没有最佳损失。我们的方法为问题提供了新的角度,见解和结果,这与广泛的原始框架不同。具体而言,当收入功能的梯度在积极范围内有限时,我们表明我们的方法可以达到库存数量较小时最佳的CR,这比所有现有的库存都要好。对于任意数量的库存,我们实现的CR在一个问题中所有在线算法中最佳CR的添加剂常数范围内。我们进一步表征了将我们的方法推广到不同应用的一般条件。例如,对于普遍的单向交易问题,价格弹性(如果没有以前的结果),我们的方法获得了一种在线算法,该算法可实现最佳CR,达到不变的因素。

We study a competitive online optimization problem with multiple inventories. In the problem, an online decision maker seeks to optimize the allocation of multiple capacity-limited inventories over a slotted horizon, while the allocation constraints and revenue function come online at each slot. The problem is challenging as we need to allocate limited inventories under adversarial revenue functions and allocation constraints, while our decisions are coupled among multiple inventories and different slots. We propose a divide-and-conquer approach that allows us to decompose the problem into several single inventory problems and solve it in a two-step manner with almost no optimality loss in terms of competitive ratio (CR). Our approach provides new angles, insights and results to the problem, which differs from the widely-adopted primal-and-dual framework. Specifically, when the gradients of the revenue functions are bounded in a positive range, we show that our approach can achieve a tight CR that is optimal when the number of inventories is small, which is better than all existing ones. For an arbitrary number of inventories, the CR we achieve is within an additive constant of one to a lower bound of the best possible CR among all online algorithms for the problem. We further characterize a general condition for generalizing our approach to different applications. For example, for a generalized one-way trading problem with price elasticity, where no previous results are available, our approach obtains an online algorithm that achieves the optimal CR up to a constant factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源