论文标题

可信赖的生物医学高维计算的使用证明的工作区块链

Proof-of-Useful-Work Blockchain for Trustworthy Biomedical Hyperdimensional Computing

论文作者

Wen, Jinghao, Ma, Dongning, Zhang, Sizhe, Sudler, Hasshi, Jiao, Xun

论文摘要

高维计算(HDC)是一种有前途的生物启发的学习范式,它的优势在平衡性能和效率方面,并且已越来越多地应用于生物密码领域。在生物医学应用中,训练有素的学习模型的可复制性和验证性等可信度至关重要。在这项工作中,我们介绍了HDCoin,这是HDC的第一个使用证明的区块链框架。使用HDCOIN,我们将常规浪费的采矿过程转变为一个竞争过程,以开发高准确性,值得信赖和可验证的高维模型。我们探索了四个不同的生物医学数据集,并对区块链矿工的关键HDC超级参数进行了广泛的设计空间探索,例如维度,学习率和重新迭代,以实现模型性能,适应性挖掘的难度和公平性,以实现使用证明。

Hyperdimensional Computing (HDC) is a promising bio-inspired learning paradigm for its advantage of balancing performance and efficiency and has been increasingly applied to the bio-medical domain. In bio-medical applications, trustworthiness such as replicability and verifiability of the trained learning models is crucial. In this work, we introduce HDCoin, the first proof-of-useful-work blockchain framework for HDC. With HDCoin, we transform the conventional energy-wasteful mining process into a competitive process for developing high accuracy, trustworthy and verifiable hyperdimensional models. We explore four diverse biomedical datasets, and conduct an extensive design-space exploration of key HDC hyperparameters of blockchain miners such as dimensionality, learning rate, and retraining iterations for model performance, adaptive mining difficulty and fairness on proof-of-useful-work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源