论文标题
基于集群的个性化联合学习的能源感知边缘协会
Energy-Aware Edge Association for Cluster-based Personalized Federated Learning
论文作者
论文摘要
无线网络的联合学习(FL)通过利用网络边缘的无处不在的智能进行隐私保护模型培训来实现数据敏感服务。随着上下文感知服务的扩散,多元化的个人喜好导致用户数据之间有条件分布的意见,这导致推理性能差。从这个意义上讲,群集联合学习是针对具有相似偏好的组用户设备的,并为每个集群提供个性化模型。这要求在边缘协会中进行创新设计,涉及用户聚类以及资源管理优化。我们通过共同考虑模型准确性,通信资源分配和能源消耗来制定准确的折衷优化问题。为了遵守FL中的参数加密技术,我们提出了一个迭代解决方案过程,该过程在云服务器上采用基于深入学习的方法进行边缘关联。奖励功能包括每个基站的最小能源消耗以及所有用户的平均模型准确性。在我们提出的解决方案下,多个边缘基站被充分利用,以实现具有成本效益的个性化联合学习,而无需任何有关模型参数的知识。仿真结果表明,我们提出的策略以低能成本以实现准确的学习来优于现有策略。
Federated Learning (FL) over wireless network enables data-conscious services by leveraging the ubiquitous intelligence at network edge for privacy-preserving model training. As the proliferation of context-aware services, the diversified personal preferences causes disagreeing conditional distributions among user data, which leads to poor inference performance. In this sense, clustered federated learning is proposed to group user devices with similar preference and provide each cluster with a personalized model. This calls for innovative design in edge association that involves user clustering and also resource management optimization. We formulate an accuracy-cost trade-off optimization problem by jointly considering model accuracy, communication resource allocation and energy consumption. To comply with parameter encryption techniques in FL, we propose an iterative solution procedure which employs deep reinforcement learning based approach at cloud server for edge association. The reward function consists of minimized energy consumption at each base station and the averaged model accuracy of all users. Under our proposed solution, multiple edge base station are fully exploited to realize cost efficient personalized federated learning without any prior knowledge on model parameters. Simulation results show that our proposed strategy outperforms existing strategies in achieving accurate learning at low energy cost.