论文标题
弹性应力会改变平衡角角吗?
Does elastic stress modify the equilibrium corner angle?
论文作者
论文摘要
我们考虑弹性和各向异性表面能对双轴负荷下二维空隙的能量最小化形状的影响。特别是,我们考虑了拐角处应变能密度在角落很单数的角色形状。弹性问题是使用复杂电位的边界积分方程式提出的。通过融合空隙角处的奇异弹性场的渐近行为,我们开发了一种数值光谱方法,用于确定一类任意空隙形状和角角的应力。我们使用变化的计算将表面能和弹性势能的总能量最小化,从而在边界上获得与弹性场耦合的边界上的Euler-Lagrange方程。使用数值光谱法确定空隙边界的形状,该方法同时确定平衡空隙形状和奇异弹性场。我们的结果表明,最小化总能量的精确角角不受奇异弹性场的存在影响。但是,角落表面上的应力奇异性必须通过有效改变形状的宏观几何形状并有效地改变明显的角角的曲率的奇异性来平衡。这些结果调解了Srolovitz和Davis(2001)和Siegel,Miksis和Voorhees(2004)的结果中有关弹性对平衡角角影响的明显矛盾,并确定了与角落在自由弹性问题上相关的重要非平凡奇异行为。
We consider the influence of elasticity and anisotropic surface energy on the energy-minimizing shape of a two-dimensional void under biaxial loading. In particular, we consider void shapes with corners for which the strain energy density is singular at the corner. The elasticity problem is formulated as a boundary integral equation using complex potentials. By incorporating the asymptotic behavior of the singular elastic fields at corners of the void, we develop a numerical spectral method for determining the stress for a class of arbitrary void shapes and corner angles. We minimize the total energy of surface energy and elastic potential energy using calculus of variations to obtain an Euler-Lagrange equation on the boundary that is coupled to the elastic field. The shape of the void boundary is determined using a numerical spectral method that simultaneously determines the equilibrium void shape and singular elastic fields. Our results show that the precise corner angles that minimize the total energy are not affected by the presence of the singular elastic fields. However, the stress singularity on the void surface at the corner must be balanced by a singularity in the curvature at the corner that effectively changes the macroscopic geometry of the shape and effectively changes the apparent corner angle. These results reconcile the apparent contradiction regarding the effect of elasticity on equilibrium corner angles in the results of Srolovitz and Davis (2001) and Siegel, Miksis and Voorhees (2004), and identify an important nontrivial singular behavior associated with corners on free-boundary elasticity problems.