论文标题
从磁化率推导的库酸盐相图:什么是“ true”伪制成线?
Cuprates phase diagram deduced from magnetic susceptibility: what is the `true' pseudogap line?
论文作者
论文摘要
两个矛盾的相图已经主导了高$ T_C $ CUPRATE超导体的文献。伪行线是否越过超导$ T_C $ -DOME?为了回答,我们重新审视了四种不同化合物的实验磁化易感性和骑士移位,la $ _ {1-x} $ sr $ _x $ _x $ cuo $ _4 $,bi $ $ _2 $ _2 $ _2 $ _2 $ _2 $ ca $ _ {1-x} BI $ _2 $ SR $ _2 $ CACU $ _2 $ o $ _ {8+y} $,yba $ _2 $ _2 $ cu $ _3 $ o $ $ $ _ {6+y} $,作为温度和掺杂的功能。对于所有材料,具有磁性和电子贡献的所有材料的功能可以通过相同的功能来描述易感性。前者是2D抗铁磁(AF)方形晶格响应,具有磁相关的特征温度$ t_ {max} $。后者是“ Pauli”术语,揭示了在伪塔温度$ t^*$处的状态的电子密度中的间隙开口。 从数据的精确拟合来看,我们发现$ t_ {max}(p)$在较宽范围内随着掺杂($ p $)的函数而线性减小,但在超额式制度中突然饱和。同时,$ t^*(p)$是{\ it线性和切线}到圆顶,交叉或接近圆顶顶部的$ t_ {max}(p)$,表明行为的质量变化是从不足的行为变为超额制度。 与伪群在最佳掺杂上方终止的想法相反,我们的分析表明,整个相图中存在差距。它与$ t_c $高于$ t_c $的孔对或“ pairons”引起的伪gap一致。我们得出的结论是,反映AF磁相关性的$ t_ {max} $经常被误解为pseudogap温度$ t^*$。
Two contradictory phase diagrams have dominated the literature of high-$T_c$ cuprate superconductors. Does the pseudogap line cross the superconducting $T_c$-dome or not? To answer, we have revisited the experimental magnetic susceptibility and knight shift of four different compounds, La$_{1-x}$Sr$_x$CuO$_4$, Bi$_2$Sr$_2$Ca$_{1-x}$Y$_x$Cu$_2$O$_8$, Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$, and YBa$_2$Cu$_3$O$_{6+y}$, as a function of temperature and doping. The susceptibility can be described by the same function for all materials, having a magnetic and an electronic contributions. The former is the 2D antiferromagnetic (AF) square lattice response, with a characteristic temperature of magnetic correlations $T_{max}$. The latter is the `Pauli' term, revealing the gap opening in the electronic density of states at the pseudogap temperature $T^*$. From precise fits of the data, we find that $T_{max}(p)$ decreases linearly as a function of doping ($p$) over a wide range, but saturates abruptly in the overdoped regime. Concomitantly, $T^*(p)$ is {\it linear and tangent} to the dome, either crossing or approaching $T_{max}(p)$ at the top of the dome, indicating a qualitative change of behavior from underdoped to overdoped regimes. Contrary to the idea that the pseudogap terminates just above optimal doping, our analysis suggests that the gap exists throughout the phase diagram. It is consistent with a pseudogap due to hole pairs, or `pairons', above $T_c$. We conclude that $T_{max}$, reflecting the AF magnetic correlations, has often been misinterpreted as the pseudogap temperature $T^*$.