论文标题

多组分溶液的可区分对近似值中修改的准化学模型

The modified quasichemical model in the Distinguishable-Pair Approximation for multicomponent solutions

论文作者

Wang, Kun, Chartrand, Patrice

论文摘要

可在液体中的歧管短距离阶的可区分对近似(MQMDPA)中修改的quasichemcial模型已成功扩展到多组分解决方案。扩展是通过几何插值法进行的。引入了三种类型的插值模型,即Kohler,Toop和Chou,最初通过在其组成的二元溶液中使用这些模型在三元溶液中制定了对相互作用能。可以根据配对分数(依赖构型)或协调 - 等效分数(组成依赖性)来扩展对的能量。随后将这些方法扩展为多组分解决方案。合并的Kohler-Toop模型的一般形式主义被用来允许完全选择的自由度以对称或不对称模型处理任何三元子系统。同时,一般的Chou模型也用于处理所有三元子系统,而无需任何人类干扰以选择对称或不对称组件,但仅取决于与共有成员的每个二进制解决方案中的性质的相似性和差异。关于不同插值模型的利用,对优点和缺点进行了严格的讨论。

The Modified Quasichemcial Model in the Distinguishable-Pair Approximation (MQMDPA) for manifold short-range orders in liquids has been successfully extended to multicomponent solutions. The extension is conducted by means of the geometrical interpolation method. Three types of interpolation models, namely Kohler, Toop and Chou, are introduced to initially formulate the pair interaction energies in ternary solutions by employing those in their constituent binary solutions. The pair energies can be expanded in terms of the pair fractions (configuration-dependent) or in terms of the coordination-equivalent fractions (composition-dependent). These methods are subsequently extended for use in multicomponent solutions. A general formalism for the combined Kohler-Toop model is employed to permit complete freedom of choice to treat any ternary subsystems with a symmetric or asymmetric model. Meanwhile, a general Chou model is also used to treat all ternary subsystems without any human interference to select symmetric or asymmetric components but only dependent upon the similarity and difference in properties from each two binary solutions with a co-member. Advantages and shortcomings are critically discussed regarding the utilization of different interpolation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源