论文标题
增强的光催化染料降解和Bi $ _ {25} $ feo $ _ {40} $的氢生产能力
Enhanced photocatalytic dye degradation and hydrogen production ability of Bi$_{25}$FeO$_{40}$-rGO nanocomposite and mechanism insight
论文作者
论文摘要
Bi $ _ {25} $ feo $ _ {40} $ - 减少氧化石墨烯(RGO)纳米复合材料和Bifeo $ _ {3} $ - RGO纳米复合材料之间的全面比较,以调查其在水分和水中降解的光化能力。适用于合成纳米复合材料的水热技术提供了多功能温度控制的相位选择,perovskite bifeo $ _ {3} $和sillenite bi $ _ {25} $ _ {25} $ feo $ _ $ _ {40} $。钙钛矿和硅酸盐结构化纳米复合材料都稳定,并且比纯Bifeo $ _ {3} $纳米颗粒和市售的Degussa P25 Titania具有更高的光催化能力。值得注意的是,BI $ _ {25} $ feo $ _ {40} $ - RGO纳米复合材料在可见光下表现出了优越的光催化能力和稳定性,而不是Bifeo $ _ {3} $ -RGO纳米复合材料。 Bi $ _ {25} $ feo $ _ {40} $ - RGO纳米复合材料的优质光催化性能背后的可能机制。
A comprehensive comparison between Bi$_{25}$FeO$_{40}$-reduced graphene oxide(rGO) nanocomposite and BiFeO$_{3}$-rGO nanocomposite has been performed to investigate their photocatalytic abilities in degradation of Rhodamine B dye and generation of hydrogen by water-splitting. The hydrothermal technique adapted for synthesis of the nanocomposites provides a versatile temperature-controlled phase selection between perovskite BiFeO$_{3}$ and sillenite Bi$_{25}$FeO$_{40}$. Both perovskite and sillenite structured nanocomposites are stable and exhibit considerably higher photocatalytic ability over pure BiFeO$_{3}$ nanoparticles and commercially available Degussa P25 titania. Notably, Bi$_{25}$FeO$_{40}$- rGO nanocomposite has demonstrated superior photocatalytic ability and stability under visible light irradiation than that of BiFeO$_{3}$-rGO nanocomposite. The possible mechanism behind the superior photocatalytic performance of Bi$_{25}$FeO$_{40}$-rGO nanocomposite has been critically discussed.