论文标题
IOTA:分析物联网系统级安全性的框架
Iota: A Framework for Analyzing System-Level Security of IoTs
论文作者
论文摘要
大多数物联网系统都涉及物联网设备,通信协议,远程云,物联网应用程序,移动应用程序和物理环境。但是,现有的物联网安全分析仅关注所有基本组件的子集,例如设备固件,而忽略了物联网系统的交互性质,从而产生了有限的攻击检测功能。在这项工作中,我们提出了IOTA,这是一种基于逻辑编程的框架,以对物联网系统执行系统级安全分析。 IOTA为物联网系统生成攻击图,显示所有可能遭到损害并枚举潜在攻击痕迹的系统资源。在构建IOTA时,我们设计了新的技术,以扫描物联网系统的单个脆弱性,并进一步为物联网脆弱性创建通用的剥削模型。我们还识别和建模不同设备之间的物理依赖性,因为它们是物联网系统独有的,并且受对手的使用来发射复杂的攻击。此外,我们利用NLP技术根据应用程序描述提取物联网应用语义。为了评估脆弱性的全系统影响,我们提出了两个基于攻击图的指标,这些指标提供了有关强化物联网系统的指导。对127个IoT CVE(常见漏洞和暴露)的评估表明,IOTA的剥削建模模块在预测漏洞的前提和效果方面达到了80%以上的精度。我们将IOTA应用于基于实际物联网应用程序和设备的37个合成智能家用物联网系统。实验结果表明,我们的框架是有效且高效的。在攻击图显示的27个最短攻击痕迹中,系统管理员没有预期62.8%。为由50个设备组成的物联网系统生成和分析攻击图只需1.2秒即可。
Most IoT systems involve IoT devices, communication protocols, remote cloud, IoT applications, mobile apps, and the physical environment. However, existing IoT security analyses only focus on a subset of all the essential components, such as device firmware, and ignore IoT systems' interactive nature, resulting in limited attack detection capabilities. In this work, we propose Iota, a logic programming-based framework to perform system-level security analysis for IoT systems. Iota generates attack graphs for IoT systems, showing all of the system resources that can be compromised and enumerating potential attack traces. In building Iota, we design novel techniques to scan IoT systems for individual vulnerabilities and further create generic exploit models for IoT vulnerabilities. We also identify and model physical dependencies between different devices as they are unique to IoT systems and are employed by adversaries to launch complicated attacks. In addition, we utilize NLP techniques to extract IoT app semantics based on app descriptions. To evaluate vulnerabilities' system-wide impact, we propose two metrics based on the attack graph, which provide guidance on fortifying IoT systems. Evaluation on 127 IoT CVEs (Common Vulnerabilities and Exposures) shows that Iota's exploit modeling module achieves over 80% accuracy in predicting vulnerabilities' preconditions and effects. We apply Iota to 37 synthetic smart home IoT systems based on real-world IoT apps and devices. Experimental results show that our framework is effective and highly efficient. Among 27 shortest attack traces revealed by the attack graphs, 62.8% are not anticipated by the system administrator. It only takes 1.2 seconds to generate and analyze the attack graph for an IoT system consisting of 50 devices.