论文标题

布朗量子振荡器的自由能的分配:耗散和磁场的影响

Partition of free energy for a Brownian quantum oscillator: Effect of dissipation and magnetic field

论文作者

Kaur, Jasleen, Ghosh, Aritra, Bandyopadhyay, Malay

论文摘要

最近,能量等电位定理的量子对应物引起了很大的关注。由此激励,我们制定并研究了一个类似的陈述,该陈述是量子振荡器的自由能,该量子振荡器线性耦合到由无限数量的独立谐波振荡器组成的被动热浴。我们明确地证明,布朗振荡器的自由能可以以$ f(t)= \ langle f(ω,t)\ rangle $ $ f(ω,t)$是单个浴振荡器的自由能表示。总体平均过程涉及两个不同的平均值:第一个平均值是浴振荡器的规范合奏,而第二个则表示从零到无穷大的频率的整个频率平均。后者是通过相关概率分布函数$ \ MATHCAL {P}(ω)$进行的,该$可以从线性响应理论中遇到的广义易感性的知识中得出。还展示了不同耗散机制的作用。我们发现结果的两个显着后果。首先,我们的分析自然而然地遵循了能量等级定理的量子对应物。我们获得的第二个推论是开放量子系统热力学第三定律的自然推导。最后,在存在外部磁场的情况下,我们将形式主义推广到三个空间维度。

Recently, the quantum counterpart of energy equipartition theorem has drawn considerable attention. Motivated by this, we formulate and investigate an analogous statement for the free energy of a quantum oscillator linearly coupled to a passive heat bath consisting of an infinite number of independent harmonic oscillators. We explicitly demonstrate that the free energy of the Brownian oscillator can be expressed in the form $F(T) = \langle f(ω,T) \rangle $ where $f(ω,T)$ is the free energy of an individual bath oscillator. The overall averaging process involves two distinct averages: the first one is over the canonical ensemble for the bath oscillators, whereas the second one signifies averaging over the entire bath spectrum of frequencies from zero to infinity. The latter is performed over a relevant probability distribution function $\mathcal{P}(ω)$ which can be derived from the knowledge of the generalized susceptibility encountered in linear response theory. The effect of different dissipation mechanisms is also exhibited. We find two remarkable consequences of our results. First, the quantum counterpart of energy equipartition theorem follows naturally from our analysis. The second corollary we obtain is a natural derivation of the third law of thermodynamics for open quantum systems. Finally, we generalize the formalism to three spatial dimensions in the presence of an external magnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源