论文标题
基于监督学习的QOE预测未来网络中的视频流:与比较研究的教程
Supervised Learning based QoE Prediction of Video Streaming in Future Networks: A Tutorial with Comparative Study
论文作者
论文摘要
基于经验的质量(QOE)服务管理仍然是成功在下一代网络(例如5G/6G)中成功配置多媒体服务的关键,该网络需要适当的工具来进行质量监控,预测和资源管理,其中机器学习(ML)可以发挥关键作用。在本文中,我们提供了有关基于监督学习ML模型的视频流服务的QOE测量和预测解决方案的开发和部署的教程。首先,我们提供了一条详细的管道,用于开发和部署基于监督的基于学习的视频流预测模型,该模型涵盖了几个阶段,包括数据收集,功能工程,模型优化和培训,测试,预测和评估。其次,我们使用网络启用技术(例如软件定义的网络(SDN),网络函数虚拟化(NFV)和移动边缘计算(MEC)(MEC),我们讨论了下一代网络(5G/6G)在下一代网络(5G/6G)中的ML模型的部署。第三,我们介绍了基于多个性能指标的视频流应用程序预测的最新监督学习ML模型的比较研究。
The Quality of Experience (QoE) based service management remains key for successful provisioning of multimedia services in next-generation networks such as 5G/6G, which requires proper tools for quality monitoring, prediction and resource management where machine learning (ML) can play a crucial role. In this paper, we provide a tutorial on the development and deployment of the QoE measurement and prediction solutions for video streaming services based on supervised learning ML models. Firstly, we provide a detailed pipeline for developing and deploying supervised learning-based video streaming QoE prediction models which covers several stages including data collection, feature engineering, model optimization and training, testing and prediction and evaluation. Secondly, we discuss the deployment of the ML model for the QoE prediction/measurement in the next generation networks (5G/6G) using network enabling technologies such as Software-Defined Networking (SDN), Network Function Virtualization (NFV) and Mobile Edge Computing (MEC) by proposing reference architecture. Thirdly, we present a comparative study of the state-of-the-art supervised learning ML models for QoE prediction of video streaming applications based on multiple performance metrics.