论文标题

关于神经微分方程

On Neural Differential Equations

论文作者

Kidger, Patrick

论文摘要

动态系统和深度学习的结合已成为一个引起人们极大兴趣的话题。特别是,神经微分方程(NDE)表明神经网络和微分方程是同一枚硬币的两个方程。传统的参数化微分方程是一种特殊情况。许多流行的神经网络体系结构,例如残留网络和经常性网络,都是离散化。 NDE适用于解决生成问题,动态系统和时间序列(尤其是物理,金融,...),因此对现代机器学习和传统数学建模都感兴趣。 NDE提供了高容量的功能近似,模型空间上的强大先验,处理不规则数据,记忆效率以及双方的大量可用理论的能力。 该博士学位论文对该领域进行了深入的调查。 主题包括:神经普通微分方程(例如,用于物理系统的混合神经/机械建模);神经控制的微分方程(例如,对于不规则时间序列的学习功能);和神经随机微分方程(例如,产生能够代表复杂随机动力学的生成模型,或从复杂的高维分布中进行采样)。 进一步的主题包括:NDE的数值方法(例如,可逆的微分方程求解器,通过微分方程的反向传播,布朗重建);动力系统的符号回归(例如,通过正则演化);和深度隐式模型(例如,深度平衡模型,可区分优化)。 我们预计,对深度学习与动态系统的婚姻感兴趣的任何人都将感兴趣,并希望它将为当前的最新情况提供有用的参考。

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源