论文标题
等法三角剖分和混血功能的后临界动力学
Equilateral Triangulations and The Postcritical Dynamics of Meromorphic Functions
论文作者
论文摘要
我们表明,某些域中的任何平面设置$ s $离散的任何动态都可以通过$ d $中的功能holomorphic的后临界动力学来实现,直到小扰动。证明的关键步骤和独立利息的结果是,任何平面域$ d $都可以用三角形将直径$ \ rightArrow0 $(以任何规定的利率)接近$ \ partial d $进行三角形。
We show that any dynamics on any planar set $S$ discrete in some domain $D$ can be realized by the postcritical dynamics of a function holomorphic in $D$, up to a small perturbation. A key step in the proof, and a result of independent interest, is that any planar domain $D$ can be equilaterally triangulated with triangles whose diameters $\rightarrow0$ (at any prescribed rate) near $\partial D$.