论文标题

直接观察纳米磁性人造Hopfield网络中动态玻璃过渡

Direct observation of a dynamical glass transition in a nanomagnetic artificial Hopfield network

论文作者

Saccone, Michael, Caravelli, Francesco, Hofhuis, Kevin, Parchenko, Sergii, Birkhölzer, Yorick A., Dhuey, Scott, Kleibert, Armin, van Dijken, Sebastiaan, Nisoli, Cristiano, Farhan, Alan

论文摘要

自旋玻璃通常定义为具有随机竞争相互作用的无序系统,是一个广泛研究的复杂系统。描述自旋眼镜的理论模型广泛用于其他复杂系统,例如描述大脑功能,错误校正代码或储备市场动态的系统。对自旋眼镜的这种广泛的兴趣为在人造自旋冰系统的框架内产生人造自旋玻璃提供了强大的动力。在这里,我们介绍了由偶极耦合的单域ISING型纳米磁体组成的人造自旋玻璃的实验实现,该纳米磁体排列在相互作用网络上,该网络复制了Hopfield神经网络的各个方面。使用低温X射线光发射电子显微镜(XPEEM),我们对这些网络中热驱动的矩波的温度依赖性成像进行了,并观察到了二维ISISS自旋玻璃的特征。具体而言,自旋玻璃相关函数的温度依赖性遵循二维自旋玻璃理论模型预测的功率定律趋势。此外,我们观察到难以观察到崎spin的自旋玻璃自由能的明确特征,从平衡自相关以及从稳定到不稳定的动力学的过渡中。

Spin glasses, generally defined as disordered systems with randomized competing interactions, are a widely investigated complex system. Theoretical models describing spin glasses are broadly used in other complex systems, such as those describing brain function, error-correcting codes, or stock-market dynamics. This wide interest in spin glasses provides strong motivation to generate an artificial spin glass within the framework of artificial spin ice systems. Here, we present the experimental realization of an artificial spin glass consisting of dipolar coupled single-domain Ising-type nanomagnets arranged onto an interaction network that replicates the aspects of a Hopfield neural network. Using cryogenic x-ray photoemission electron microscopy (XPEEM), we performed temperature-dependent imaging of thermally driven moment fluctuations within these networks and observed characteristic features of a two-dimensional Ising spin glass. Specifically, the temperature dependence of the spin glass correlation function follows a power law trend predicted from theoretical models on two-dimensional spin glasses. Furthermore, we observe clear signatures of the hard to observe rugged spin glass free energy in the form of sub-aging, out of equilibrium autocorrelations and a transition from stable to unstable dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源