论文标题

快速网络勘探策略,以介绍关键字发现的低能消耗

A Fast Network Exploration Strategy to Profile Low Energy Consumption for Keyword Spotting

论文作者

Mazumder, Arnab Neelim, Mohsenin, Tinoosh

论文摘要

如今,关键字斑点是针对智能设备的针对语音用户交互的组成部分。在这种情况下,神经网络被广泛用于其灵活性和高精度。但是,提出适合精度要求和硬件部署的合适配置是一个挑战。我们提出了一种基于回归的网络探索技术,该技术考虑了网络层的网络过滤器($ s $)和量化($ q $)的缩放,从而导致了FPGA硬件实现的友好和节能配置。我们在FPGA上使用$ \ MATHCAL {NN} \ scriptStyle \ langle Q,\,s \ rangle \ displayStyle $的不同组合进行实验,以介绍已部署网络的能源消耗,以便用户可以立即选择最能效率的网络配置。我们的加速器设计部署在Xilinx AC 701平台上,与最近的硬件实现相比,分别具有2.1 $ \ times $和4 $ \ times $的改进能源和能源效率结果。

Keyword Spotting nowadays is an integral part of speech-oriented user interaction targeted for smart devices. To this extent, neural networks are extensively used for their flexibility and high accuracy. However, coming up with a suitable configuration for both accuracy requirements and hardware deployment is a challenge. We propose a regression-based network exploration technique that considers the scaling of the network filters ($s$) and quantization ($q$) of the network layers, leading to a friendly and energy-efficient configuration for FPGA hardware implementation. We experiment with different combinations of $\mathcal{NN}\scriptstyle\langle q,\,s\rangle \displaystyle$ on the FPGA to profile the energy consumption of the deployed network so that the user can choose the most energy-efficient network configuration promptly. Our accelerator design is deployed on the Xilinx AC 701 platform and has at least 2.1$\times$ and 4$\times$ improvements on energy and energy efficiency results, respectively, compared to recent hardware implementations for keyword spotting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源