论文标题

关于Hessenberg品种的T-量相结合的共同学

On the T-equivariant cohomology of Hessenberg varieties

论文作者

Argáez, Daniel Sánchez, Zaldívar, Felipe

论文摘要

对于内态$ s:v \ rightArrow v $,有限维数复合矢量空间和完整标志品种上的圆环$ t $的动作$ \ text {gl} _n({\ mathbb c})/b $,我们对$ s $ is s $ is semisimple或常规nililpottent进行了描述。我们还计算了Hessenberg subvariety $ \ text {hes}(s,h)\ subseteq \ text {gl} _n({\ mathbb c})/b $的Hessenberg函数$ h $ h $ h $。对于一维圆环$ s $的动作和常规的nilpotent内态$ n:v \ rightarrow v $,我们为使用确定性的任何Hessenberg功能提供了新的Hessenberg品种$ \ text {Hes}(hs,h)$的赫森伯格品种$ \ text {hes h)$的新计算。

For an endomorphism $s:V\rightarrow V$ of a finite dimensional complex vector space and an action of a torus $T$ on the full flag variety $\text{GL}_n({\mathbb C})/B$, we give a description of its fixed point set when $s$ is semisimple or regular nilpotent. We also compute the one dimensional orbits of this action on the Hessenberg subvariety $\text{Hes}(s,h)\subseteq \text{GL}_n({\mathbb C})/B$ for any Hessenberg function $h$. For the action of the one dimensional torus $S$ and a regular nilpotent endomorphism $N:V\rightarrow V$, we give a new computation of the equivariant cohomology of the Hessenberg variety $\text{Hes}(N,h)$ for any Hessenberg function using determinantal conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源