论文标题
线性量子随机系统的翻译不变网络的无限 - 水平风险敏感性标准
Infinite-horizon risk-sensitive performance criteria for translation invariant networks of linear quantum stochastic systems
论文作者
论文摘要
本文关注的是相同的线性量子随机系统的网络,这些网络以翻译不变的方式相互交互和外部骨气场相互作用。该系统与多维晶格的位点相关,并由耦合的线性量子随机微分方程(QSDE)控制。这些QSDE的块TOEPLITZ系数是由能量和耦合矩阵指定的,这些矩阵量化了组件系统的Hamiltonian和耦合操作员。当它满足稳定性条件并由统计独立的真空场驱动时,我们讨论了网络不变的高斯量子状态。二次指数功能(QEF)被认为是在有限的时间间隔内通过有限网络片段的风险敏感性能标准。该功能涉及具有块Toeplitz加权矩阵的组件系统动态变量的二次函数。假设存在不变状态,我们研究了每单位时间QEF的时空渐近率和每个晶格位点的热力学限制,即无限生长的时间范围和晶格的片段。根据两个光谱函数,与网络变量的不变量子协方差内核相关的两个频谱函数获得了QEF速率的时空频域公式。还讨论了用于评估QEF速率的同质方法和渐近扩展。
This paper is concerned with networks of identical linear quantum stochastic systems which interact with each other and external bosonic fields in a translation invariant fashion. The systems are associated with sites of a multidimensional lattice and are governed by coupled linear quantum stochastic differential equations (QSDEs). The block Toeplitz coefficients of these QSDEs are specified by the energy and coupling matrices which quantify the Hamiltonian and coupling operators for the component systems. We discuss the invariant Gaussian quantum state of the network when it satisfies a stability condition and is driven by statistically independent vacuum fields. A quadratic-exponential functional (QEF) is considered as a risk-sensitive performance criterion for a finite fragment of the network over a bounded time interval. This functional involves a quadratic function of dynamic variables of the component systems with a block Toeplitz weighting matrix. Assuming the invariant state, we study the spatio-temporal asymptotic rate of the QEF per unit time and per lattice site in the thermodynamic limit of unboundedly growing time horizons and fragments of the lattice. A spatio-temporal frequency-domain formula is obtained for the QEF rate in terms of two spectral functions associated with the real and imaginary parts of the invariant quantum covariance kernel of the network variables. A homotopy method and asymptotic expansions for evaluating the QEF rate are also discussed.