论文标题
工程纳米级超声声子运输
Engineering nanoscale hypersonic phonon transport
论文作者
论文摘要
控制固体中的振动对于定制其机械性能以及与光的相互作用至关重要。热振动代表了在量子水平上许多物理过程的噪声源和驱动的来源。避免这些振动的一种策略是构造固体,使其具有音调停止频段,即没有可用的机械模式的频率范围。在这里,我们在宽光谱窗口上证明了在室温下完全没有机械振动,在图案中使用Brillouin光散射光谱法测量的图案化硅纳米结构膜中,有5.3 GHz宽带隙以8.4 GHz为中心。通过构建线路缺陷的波导,我们直接在室温下测量GHz局部模式。我们在GHz频率下进行热激发指导的机械模式的实验结果为光子 - phonon集成与光学机械和信号处理转导的应用提供了一个e弱平台。
Controlling the vibrations in solids is crucial to tailor their mechanical properties and their interaction with light. Thermal vibrations represent a source of noise and dephasing for many physical processes at the quantum level. One strategy to avoid these vibrations is to structure a solid such that it possesses a phononic stop band, i.e., a frequency range over which there are no available mechanical modes. Here, we demonstrate the complete absence of mechanical vibrations at room temperature over a broad spectral window, with a 5.3 GHz wide band gap centered at 8.4 GHz in a patterned silicon nanostructure membrane measured using Brillouin light scattering spectroscopy. By constructing a line-defect waveguide, we directly measure GHz localized modes at room temperature. Our experimental results of thermally excited guided mechanical modes at GHz frequencies provides an eficient platform for photon-phonon integration with applications in optomechanics and signal processing transduction.