论文标题
具有输入测量偏见的惯性导航系统的模棱两可的滤波器设计
Equivariant Filter Design for Inertial Navigation Systems with Input Measurement Biases
论文作者
论文摘要
惯性导航系统(INS)是自动驾驶应用程序应用的关键技术。 INS问题的估计和滤波器设计的最新进展已利用几何形状和对称性,以克服自20世纪中叶以来构成INS系统中的Mainstay的经典扩展卡尔曼滤波器(EKF)方法的局限性。行业标准INS滤波器是多重扩展的Kalman过滤器(MEKF),它使用几何结构进行态度估计以及经典的欧几里得建筑以进行位置,速度和偏置估计。最近不变的扩展卡尔曼滤波器(IEKF)为完整的导航状态,整合态度,位置和速度提供了几何框架,但仍使用古典欧几里得建筑来对偏见进行建模。在本文中,我们使用最近提出的epoiriant滤波器(EQF)框架来在完全几何框架中得出一个新颖的观察者,用于基于惯性的导航。引入具有相关虚拟偏置的虚拟速度输入会导致增强系统上的完整对称性。通过模拟和现实世界的数据评估所得的滤波器性能,并证明了与行业标准乘法EKF(MEKF)方法相比,对广泛的错误初始条件的鲁棒性提高了,并提高了准确性。
Inertial Navigation Systems (INS) are a key technology for autonomous vehicles applications. Recent advances in estimation and filter design for the INS problem have exploited geometry and symmetry to overcome limitations of the classical Extended Kalman Filter (EKF) approach that formed the mainstay of INS systems since the mid-twentieth century. The industry standard INS filter, the Multiplicative Extended Kalman Filter (MEKF), uses a geometric construction for attitude estimation coupled with classical Euclidean construction for position, velocity and bias estimation. The recent Invariant Extended Kalman Filter (IEKF) provides a geometric framework for the full navigation states, integrating attitude, position and velocity, but still uses the classical Euclidean construction to model the bias states. In this paper, we use the recently proposed Equivariant Filter (EqF) framework to derive a novel observer for biased inertial-based navigation in a fully geometric framework. The introduction of virtual velocity inputs with associated virtual bias leads to a full equivariant symmetry on the augmented system. The resulting filter performance is evaluated with both simulated and real-world data, and demonstrates increased robustness to a wide range of erroneous initial conditions, and improved accuracy when compared with the industry standard Multiplicative EKF (MEKF) approach.